
Hossainara Begum Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 8, (Part - 5) August 2015, pp.133-140

 www.ijera.com 133 | P a g e

Agent Oriented Patient Scheduling System: A Concurrent

Metatem Based Approach

Hossainara Begum
1
, Shibakali Gupta

2

1
Dept. of Computer Science & Engineering, University Institute of Technology, Burdwan, West Bengal, India

Abstract
The Problem of Patient Scheduling[6] is a major issue in a Medical Healthcare System[4]. In India, Healthcare

is an 80 billion dollar Industry and is growing at an average rate of 17% annually. However, quality healthcare

is still out of reach for many. Each year thousands of fatalities arise simply due to the fact that patient could not

be provided with proper medical facilities at the right time. A software agent may be a member of a Multi-Agent

System[2][5] (MAS) which is collectively performing a range of complex and intelligent tasks. Using

Concurrent Metatem[3], a Multi-Agent Language, we have attempted to model a patient scheduling

system[4][6] that can help hospitals collaborate among them through a Liaison-Agent, in order to provide

patients with the best care possible. Patients should no longer have to be turned down when hospitals are packed

to capacity; instead, they could simply be shifted to another hospital. Hospitals and even doctors are assigned to

patients after an automated process of matching patient needs with doctor expertise and hospital infrastructure-

leading to reduced waiting-time while maximizing efficiency and potentially saving lives.

Index Terms—Patient Scheduling, Multi Agent System, Concurrent Metatem

I. INTRODUCTION
The Problem of Patient Scheduling[6] is a major

issue in a Medical system[10] and its characterized

by high certainty and dynamic changes in patient

treatment. This scheduling is very complex and

concurrency may occur if more than one patient is

needed to be scheduling in a same time. If possible

then sometimes they are suggested to be transfer with

proper information. Patients are to be scheduled to

reduce the waiting time and to reduce idle time of

resource[1]. This scheduling problem can be solved

for multiple departments in Medical System[6].

Clinical/nonclinical department interaction makes

inappropriate patient transfer. Clinical/clinical

department interaction increases the waiting time of

the patient in a department. In health department,

patients can undergo any checkup. When a particular

resource gets overcrowded the patients can go any

free resources because there is no constraint. New

method has been proposed in this paper to transfer

the patients from overcrowded resources to free

resources. To optimize its goal we have used a Multi

Agent based patient scheduling technique[4][6].

Multi agent system[2] can be used to solve this

problem which is difficult or impossible for an

individual agent or a monolithic system to solve.

Multiple agents share the messages to interact with

each other. Multi Agent System[2] change the

complex problem into simple which can be solved

easily. Multi Agent System[2] is a system composed

of multiple interacting intelligent agents[2], is used to

solve many problems that are difficult or impossible

for an individual agent to do. In medical[10] expert

system they simplify complex problem solving by

dividing the necessary knowledge into few subunits

to which an independent intelligent agent[2] is

associated and thus the agents’ activity will be so

coordinated. In this way we can refer Multi Agent

System[2]. A Concurrent Metatem[3] system

contains a set of concurrently executing agents which

can communicate with each other via asynchronous

broadcast message passing. Here we have tried to

implement a Multi Agent Based Patient

Scheduling[4][6] by using Concurrent Metatem[3]

approach. A Multi Agent System[2] is a computer

based system, used to solve several kinds of problem

that are quite difficult and impossible for an

individual to solve. It is composed of multi

interacting intelligent agents[2] within an

environment. Multi-Agent Systems[2] consist of

several agents and their several environments. Multi

Agent Systems research refers to software agents [2].

The agents in a Multi Agent System[2] could equally

to be robots, humans or human teams. A Multi-Agent

System[2] may contain combined of human-agent.

The medical expert system[10] agents can perceive

from environment and interact with the environment

by learning and executing different action on the

environment autonomously. They can communicate

with each other that allow co-operative problem

solving[1]. Multi Agent System[2] can be applied to

Artificial Intelligence[2] [9] which divide all the

necessary knowledge or information into subunits to

which an independent intelligent agent[2] [10] is

associated to act. They can solve problem by

coordinating the agents’ activity. The aim of this

RESEARCH ARTICLE OPEN ACCESS

file:///E:\wiki\Software_agent

Hossainara Begum Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 8, (Part - 5) August 2015, pp.133-140

 www.ijera.com 134 | P a g e

system is to recognize how important processes can

be coordinated. In Multi Agent System[2] an agent

[12] is a computerized entity like a computer

programme or a robot. An agent can interact

autonomously because it has the capacity to adopt

with environment changes. A Multi Agent System[2]

is composed of a set of computer processes exist at

the same time, communicate with each other in an

environment.

II. PATIENT SCHEDULING

COORDINATION

ARCHITECTURE
Patient scheduling in Multi agent System[2][6]

process is developed for dynamic load balancing in

agent based simulation. Each agent executes their

action by message communication with others. Based

on this scheduling method, we have tried to schedule

all the patients (concurrently) by using Multi Agent

System[2]. This method provide patient the best care

possible. This method reduces the waiting time of the

patient and improves the patient satisfaction. For

better treatment Patients should be shifted to another

resources. We have designed the architecture of

patient scheduling, is shown below:

Fig. 1.Architecture of the proposed patient

scheduling

From the above architecture, there are three

types of Agents are used:

1. Hospital Agent (HA): Acts on behalf of a

Hospital. Each hospital has a Hospital Agent

which is responsible for Patient Admission.

2. Patient Agent (PA): Acts on behalf of a Hospital.

Each hospital has a Patient Agent which handles

multiple patients and allots rooms and doctors to

them.

3. Hospital Liaison Agent (HLA): Central Agent

which is responsible for hospital communication

and patient shifts between them.

Fig. 2.Architecture of the Agent communication

Hospital Liaison Agent (HLA) is in charge of

agent communication. It can receive

Resource/Hospital agent information, process the

patient agent. It is a type of Central Agent and also

maintains the count of patients to be shifted. The

Patient Agent can handles multiple patient and

provide proper medical care based on their

requirements. At each resource/Hospital there is one

Patient Agent which is in charge of patient

scheduling procedure[1], selecting the Patient sets

based on some criteria and moving them.

Resource/Hospital Agents send and receive the

requests from Hospital Liaison Agent. When a

particular resource/Hospital gets overcrowded or if

Patients require better treatment to be alive, it needs

to migrate the exceeding number of patients to

another resource in order to reduce the waiting time

of the patient and to improve the resource utilization

for Patient Satisfaction. The overcrowded resource

will send request to neighborhood resource via

Hospital Liaison Agent which response if it has

enough space to admit that patient. Moreover, rooms

are allotted and available doctors are assigned to

them by finding their needs through an automated

process. And If not then it will ignore the request[1].

III. THE PROPOSED METHOD OF

PATIENT SCHEDULING
A. Step1: Procedure Patient Admission-

1. Input Patient Details like name, sex, age, history,

department, status and criteria.

2. Check if there is any vacancy in the Current-

Hospital for the given department and criteria.

3. If there is no vacancy, go to step 4 else go to step

5.

4. Attempt to transfer the patient to another

hospital, and go to step 6.

5. Allot hospital resources to the concerned patient.

Hossainara Begum Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 8, (Part - 5) August 2015, pp.133-140

 www.ijera.com 135 | P a g e

6. Stop.

B. Step2: Procedure GetVacancyStatus-

1. Input Hospital-Name, Patient-Department and

Patient-Criteria.

2. Check the number of vacant rooms in the given

department at the given hospital.

3. If the number of vacancies is 0, then return

FALSE.

4. If the number of vacancies is more than 0, check

whether the patient's criteria and the hospital's

facilities match or not.

5. If they do match, return TRUE, else return

FALSE.

6. Stop.

C. Step3: Procedure GetVacancyCount-

1. Input Hospital-Name and Patient-Department.

2. Initialize C to 0.

3. For Each Room in the given Hospital, do step 4.

4. If the selected room is not booked AND the

selected room belongs to the given department,

then increment C by 1.

5. Return C.

6. Stop.

D. Step4: Procedure CriteriaMatch-

1. Input Hospital-Name, Criteria and Patient-

Department

2. If the given hospital does not have the given

department, then return FALSE.

For each specific_hospital_criteria and

3. For each Specific_Hospital_Criteria and

Specific_Patient_Criteria In Hospital_Facilities

and Patient_Criteria, do steps 4-5.

4. Compute P=ABS(Specific_Hospital_Criteria -

Specific_Patient_Criteria).

5. If P > CRITERION_THRESHOLD (for that

specific criteria) then return FALSE.

6. Return TRUE.

7. Stop.

E. Step5: Procedure ShiftPatient-

1. Input Patient-Name, Sex, Age, Patient-History,

Patient-Criteria, Patient-Department.

2. Initialize Proposed_Hospitals to NULL.

3. For each Hospital IN the list of all registered

hospitals, do step 4.

4. If vacancy status at the selected hospital with

respect to the patient-criteria is TRUE, then add

the selected hospital to the set of proposed

hospitals.

5. If Proposed_Hospitals is NULL, then return

FALSE.

6. Initialize BestHospital to NULL and

DepartmentRank to 0.

7. For each Hospital in Proposed_Hospitals do

steps 8-9.

8. Set R = Department Rank of the selected hospital

and given patient-department.

9. If R > DepartmentRank, set DepartmentRank to

R and BestHospital to Selected Hospital.

10. Allocate resources to the patient in the

BestHospital.

11. Return TRUE.

12. Stop.

F. Step6: Procedure AllotResourceToPatient-

1. Input Name, Sex, Age, Patient-History, Criteria,

Patient-Status, Department.

2. Allot new patient ID to the patient.

3. Allot new room to the patient.

4. Allot new doctor to the patient.

5. Record ID, Room, Doctor, Patient-Details onto

database.

6. Stop.

G. Step7: Procedure AllotRoom-

1. Input Age, EmergencyLevel, Status, Department.

2. If Status=Discharged then return NULL.

3. If Status=Surgery then return the first available

OT.

4. If Department=Unallocated then go to step 5 else

go to step 11.

5. If Status=General_Admission then return a

vacant Room in the "General" department.

6. If Status=Emergency or Status=In_Recovery

then go to step 7.

7. If Age<=1 then return a vacant Room in the

"NICU" department.

8. If Age>1 And Age<=10 then return a vacant

Room in the "PICU" department.

9. If Age>10 And EmergencyLevel>=9 return a

vacant Room in the "CCU" department.

10. If Age>10 And EmergencyLevel>=7 And

EmergencyLevel<9 then return a vacant Room in

the "ICU" department.

11. Return a vacant Room in the given department.

12. Stop.

H. Step8: Procedure AllotDoctor-

1. Input EmergencyLevel, Status, Department.

2. Initialize BestMatch=0, BestDoctor=NULL.

3. Initialize AvailableDoctors = Set of doctors in

the given department And who are available on-

call.

4. For each Doctor in AvailableDoctors do steps 5-

6.

5. Set MatchScore=DoctorPatientScore(Age,

Emergency, Status, Doctor).

6. If MatchScore>BestMatch then set

BestMatch=MatchScore and

BestDoctor=Doctor.

7. Return BestDoctor.

8. Stop.

Hossainara Begum Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 8, (Part - 5) August 2015, pp.133-140

 www.ijera.com 136 | P a g e

I. Step9: Procedure GetDoctorPatientScore-

1. Input Age, EmergencyLevel, Status, Doctor.

2. Retrieve from database the Specialization,

EmergencyExpertise and AgeSpecialization of

the given doctor.

3. If AgeSpecialization=Paediatric and Age>=18

then return 0.

4. Initialize Score=10*(EmergencyExpertise -

EmergencyLevel).

5. If Specialization=Surgery then go to step 6 else

go to step 7.

6. If Status=Surgery then Increment score by 10

else Decrement score by 10.

7. If Specialization=Diagnosis then go to step 8

else go to step 9.

8. If Status=Diagnosis then Increment score by 10

else Decrement score by 10.

9. Increment score by 10.

10. Return score.

11. Stop.

IV. PROPOSED ALGORITHM
PATIENT/HOSPITALCRITERIA(for EACH

criteria, one CRITERION THRESHOLD will be

taken):

1. Finance (Value Range: 0-1)

2. Emergency (Value Range: 0-1)

Algorithm:-

J. Step1: Procedure PatientAdmission-

Patient Admission (Name, Sex, Age, Patient

History, Criteria, Patient Status, Patient Dept) begin

Has Vacancy=Get Vacancy Status(this Hospital,

Criteria, Patient Dept);

if (has Vacancy=false) then

RequestPatientShift(Name,Sex,Age,Patient

History,Criteria,PatientStatus,PatientDept);

return;

End if

AllotResourceToPatient(Name,Sex,Age,Pati

entHistory, Criteria, PatientStatus,

PatientDept);

End

K. Step2: Procedure GetVacancyStatus-

GetVacancyStatus(Hospital,PatientCriteria,PatientDe

pt) begin

 X=GetVacancyCount(Hospital,PatientDept);

 if(X=0)

then return 0;

if(CriteriaMatch(Hospital,PatientCriteria,PatientDept

)=true) then return true; return false;

End

L. Step3: Procedure GetVacancyCount-

GetVacancyCount(Hospital,Dept)

begin

 C=0;

 for each Room in Hospital do begin

 if(Room.Booked=false And

Room.Deptartment=Dept) then C=C+1

 end if

 end

 return C;

end

M. Step4: Procedure CriteriaMatch-

CriteriaMatch(Hospital,Criteria2,PatientDept) begin

if (Hospital.hasDepartment(PatientDept)=false) then

return false;

 for each (X,Y) in (Criteria1,Criteria2) do begin

 if (ABS(X-Y)> CRITERION_THRESHOLD) then

return false;

 end

return true;

end;

N. Step5: Procedure ShiftPatient-

ShiftPatient(Name,Sex,Age,PatientHistory,Criteria,P

atientDept) begin

 ProposedHospitals=NULL;

 for each Hospital in AllHospitals do begin

 if(GetVacancyStatus(Hospital,Criteria)=true) then

 ProposedHospitals=ProposedHospitals 

Hospital;

 end if

end

if(ProposedHospitals=NULL) then return false;

 bestHospital=NULL,deptRank=0;

 for each Hospital in ProposedHospitals do begin

 R=getDepartmentRank(Hospital,PatientDept);

 If(R>deptRank) then

 deptRank=R;

 bestHospital=Hospital;

 end if

end

bestHospital.AllotResourceToPatient(Name,Sex,Age,

PatientHistory,Criteria,PatientStatus,PatientDept);

return true

end

O. Step6: Procedure AllotResourceToPatient-

AllotResourceToPatient(Name,Sex,Age,PatientHistor

y,Criteria,PatientStatus,PatientDept) begin

Room=AllotRoom(Age,Criteria,Emergency,PatientSt

atus,PatientDept);

Doctor=AllotDoctor(Age,Criteria,Emergency,Patient

Status,PatientDept);

record Patient, Room, Doctor, Name, Sex, Age,

PatientHistory, Criteria, PatientStatus;

end;

P. Step7: Procedure AllotRoom-

AllotRoom(Age,Emergency,Status,Department)

begin

Hossainara Begum Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 8, (Part - 5) August 2015, pp.133-140

 www.ijera.com 137 | P a g e

 if(Status=DISCHARGED) then return NULL;

 if(Status=SURGERY) then return getFreeOT();

 if(Department=UNKnown)then

 if(Status=EMERGENCY OR

Status=RECOVERY) then if(Age is NE)then

 return Room where Room.Booked=false

&& Room .Dept=”NICU”;

 else if(Age IS CHILD) then

 return Room where Room.Booked=false

&& Room.Dept=”PICU”; else

 if(Emergency is VERY_HIGH) then

 return Room where

Room.Booked=false &&

 Room.Dept=”CCU”;else

 return Room where

Room.Booked=false &&

 Room.Dept=”ICU”; end if

 end if

 else if(Status=GENERAL_ADMISSION)then

 return Room where

Room.Booked=false&&

 Room.Dept=”GENERAL”;

 end if

 else

 if(Status=UNDER_SPECIALIZED_TREATMEN

T) then

 Return Room where Room.Booked=false

&& Room.Dept=Department;

 end if

 end if

end;

Q. Step8: Procedure AllotDoctor-

AllotDoctor(Emergency, Status, Department)

begin

bestMatch=0, bestDoctor=NULL;

AvailableDoctors=get doctors from database where

Dept=Department;

for each Doctor in AvailableDoctors do begin

 matchScore=GetDoctorPatientScore(Age,Emergen

cy,Statu s,Doctor);

 if(matchScore>bestMatch) then

 bestMatch=matchScore;

 bestDoctor=Doctor;

 end if;

end;

return bestDoctor;

end;

R. Step9: Procedure GetDoctorPatientScore-

GetDoctorPatientScore(Age, Emergency, Status,

Doctor)

begin

Specialization, EmergencyExpertise,

AgeSpecialization = get record of Doctor;

if(AgeSpecialization = Pediatric AND Age > 18)

return 0;

score=10*(EmergencyExpertise-Emergency);

if(Specialization = Surgery) then

 if(Status=4) then

 score=score+10;

 else

 score=score-10;

 end if

else if(Specialization = Diagnosis) then

 if(Status=2) then

 score=score+10;

 else

 score=score-10;

 end if

else

 score=score+10;

end if

 return score;

end;

V. TRANSACTIONAL ANALYSIS

THROUGH TIME SEQUENCE

DIAGRAM
Time Sequence Diagram provides the way of

concurrent process. Hospital Liaison Agent can

establish a connection among many resources. when

a particular resource agent gets overcrowded then

that will send request to another neighborhood

resource agent via Hospital Liaison Agent. It will

check whether it has enough capacity to do treatment

for emergency patients and also check whether rooms

are available or not, the required doctors are there or

not. If all those criteria become matched it will

accept. If not then it will reject the request from

overcrowded resource agent. Patients are shifted

based on some criteria. Patients are transferring from

overcrowded resource agent to neighborhood

resource agent. Patients will be moved to another

resource agent. Then migrated agent will be removed

from overcrowded resource agent. This process will

be repeated until the entire overcrowded patient is

scheduled. This multi agent based Patient

Scheduling[4][6] method has been used to search for

optimized scheduling scheme[5], including migrated

agent sets. Only a single Hospital Liaison Agent

(HLA) exits in the entire system, responsible for Inter

Hospital Communication. In this Diagram this

selected Hospital Agent simulates the behavior of all

Hospital Agent in the System. Messages sent to this

Agent are intact symbolic of sending the message to

every Hospital Agent. Only the Admit Patient

message is sent to a single Hospital Agent which was

selected by the Hospital Liaison Agent (HLA) for

transferring the Patient. Thus, the selected Patient

Agent refers to the Patient Agent of the hospital

which was selected by the Hospital Liaison Agent

(HLA) for transferring the Patient[1].

Hossainara Begum Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 8, (Part - 5) August 2015, pp.133-140

 www.ijera.com 138 | P a g e

Fig. 3.Time Sequence Diagram

Above diagram describes the time sequence

diagram of a complete patient scheduling processing

medical system. One patient is to be admitted. Here,

T1- patient Approach for admission to this Hospital

Agent.

T2- hospital Agent asks to Patient Agent for Resource

Allotment of that Patient.

T3- Patient ID provided/allotted by Patient Agent.

T4- Room provided/allotted by Patient Agent.

T5- Doctor provided/allotted by Patient Agent.

T6- this Hospital Agent request to Hospital Liaison

Agent for Patient Shifting.

T7- Hospital Liaison Agent request for Vacancy

report to other Hospital Agent

T8- Hospital agent search to get Vacancy status.

T9- Hospital agent search criteria of patient.

T10- Hospital agent provides a vacancy report to the

Hospital Liaison Agent.

T11- based on the vacancy report, Patient are

requested to admit.

T12- Hospital Agent request to Patient Agent for

resource allotment of that Patient.

T13- Patient Agent of the Selected Hospital generates

a Patient ID.

T14- Patient Agent of the Selected Hospital

Provide/allot room.

T15- Patient Agent of the Selected Hospital

provide/allot Doctor.

VI. CONCURRENT METATEM
Concurrent MetateM[2][3] provides an

operational framework[9] through which societies of

MetateM[7][8][9] processes can operate and

communicate with each others. the notion of

executing a logical specification which generates

individual agent behavior[3]. The temporal

connectives [7][8][9] can be divided into two

categories which are as follows:

1. Some Strict past time connectives: ●

(weak last), (Strong Last), ◊ (was), ■ (heretofore),

 (Since) and Z (Zince or weak since)[3][7][8][9].

2. Some Present and future time

connectives: O (next), ◊ (sometime), □ (always), Ʋ

(until) and ⱳ (unless).

Here whenever one job is executed the antecedent

part will always be about past time and the

consequent part will always be about present and

future time[3][7][8][9].

For Examples-

1. □important (agents) means “it will always be

true that agents are important”[3][7][8][9].

2. ◊ Important (Process) means “sometime in the

future, Process will be important”[3][7][8][9].

3. ♦ Important (Prolog) means “sometime in the

past it was true that Prolog was

important”[3][7][8][9].

4. (¬friends (us)) Ʋ apologize (you) means “we are

not friends until you apologize”[3][7][8][9].

5. Ο apologize (you) means “tomorrow (in the next

state), you apologize”[3][7][8][9].

VII. IMPLEMENTATION USING

CONCURRENT METATEM

APPROCH
A. Step1:

Patient-agent (allotResourceForPatient)

[patientAdmitted]:

Start => waiting

 True => ◊ waiting

allotResourceForPatient(Name,Sex,Age,History,Cr

iteria,Status,Dept)=>allotRoom(HospitalName,Dep

t,Criteria,Status,Age)

allotRoom(Hospital,Name,Dept,Criteria,Status,Age

)=>¬ waiting

allotRoom(Hospital,Name,Dept,Criteria,Status,Age

)=>allotDoctor(HospitaName,Dept,Criteria,Status

,Age)

allotDoctor(Hospital,Name,Dept,Criteria,Status,Ag

e)˄doctor(Hospital,X,Dept,Criteria) =>

PatientAdmitted(Name,X)

allotDoctor(Hospital,Name,Dept,Criteria,Status,Ag

e)=>waiting.

B. Step2:

hospital-liaison-agent(shiftPatient,vacancyReport)

[hasVacancy,admitPatient]:

 start => known(hospital-agent)

shiftPatient(Name,Sex,Age,History,Criteria,Status,

Dept)˄known(H)˄hospital(H,C,Criteria)=> ¬

waiting

shiftPatient(Name,Sex,Age,History,Criteria,Status,

Dept)˄known(H)˄hospital(H,C,Criteria)=>hasVaca

ncy(Name, Sex,Age,History, Criteria,Status, Dept)

vacancyReport(N)˄(0<N)˄¬waiting=>admitPatie

Hossainara Begum Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 8, (Part - 5) August 2015, pp.133-140

 www.ijera.com 139 | P a g e

nt(Name Sex, age, History, criteria Status,Dept)

vacancyReport(N) ˄ (0<N) ˄ ¬waiting

=>waiting.

C. Step3:

hospitalagent(admitPatient,patientAdmitted,disc

hargePatient,hasVacancy)

[shiftPatient,vacancyReport]:

admitPatient(Name,Sex,Age,History,Criteria,Status

,Dept)˄vacancy(P)˄(0<P)=>servePatient(Name,S

ex,Age,History,Criteria,Status,Dept)

admitPatient(Name,Sex,Age,History,Criteria,Status

,Dept)˄vacancy(0)=>ShiftPatient(Name,Sex,Age,

History,Criteria,Status,Dept)

servePatient(Name,Sex,Age,History,Criteria,Status,

Dept)˄vacancy(X)˄ (Y=X-1)=>vacancy(Y)

servePatient(Name,Sex,Age,History,Criteria,Status,

Dept)=>allocateResourceForPatient(Name,Sex,Age

,History,Criteria,Status,Dept)

dischargePatient(Name,Sex,Age,History,Criteria,St

atus,Dept)=> vacancy(X)˄ (Y=X+1) =>

vacancy(Y)

hasVacancy(Name,Sex,Age,History,Criteria,Status,

Dept)˄department(self,Dept)˄vacancy(X)˄(0<X)=>

vacancyReport(1)

hasVacancy(Name,Sex,Age,History,Criteria,Status,

Dept)˄vacancy(0) =>vacancyReport(0)

hasVacancy(Name,Sex,Age,History,Criteria,Status,

Dept)˄department(selfDept) => vacancyReport(0).

VIII. EXPERIMENTAL RESULTS
To implement this scheduling method for

distributed patients with grouping, hardware

requirements and software requirements are used.

Hardware Requirements are Intel® Core (TM) i3-

4030U CPU @ 1.90 GHz processor and 64- bit

operating system are used. Software Requirements

are JDK 1.6 java software used with METATEM

package. Three resources and Ten patient Agents are

created to do the scheduling. Initially create the

patient agent by retrieving from database. Each

patient agent have unique agent id which will be

generated while creating an agent. Created patient

agent should be send to resource agent to do their

treatment. Through agent communication one

resource agent sends the message to another resource

agent. After receiving the responses, patient agents

are moved from one resource agent to other resource

agent. Available rooms are allotted and Available

doctors are also be assigned to them. Thus the

scheduling has been done and minimizes the fatalities

of a patient lives.

IX. CONCLUSION
In this paper we have framed a novel Multi

Agent based patient scheduling[6] algorithm and we

have implemented it through MetateM language. In

this algorithm we have tried to execute all the

processes in a concurrent way. And to hold the

rhythm we introduced Concurrent MetateM[2][3]

approach. But in future we can use any other novel

(customized) techniques for better concurrency.

Color Petri Net (CPN) concept can be an alternative

in this context.

REFERENCES
[1.] G. Mageshwari, E. Grace Mary Kanaga,

Department of Computer Science and

Engineering, Karunya University,

Coimbatore, India.

magesh.5.spgm@gmail.com,

grace@karunya.edu, “A Distributed

Optimized Patient Scheduling using Partial

Information”.

[2.] Michael Wooldridge Department of

Computer Science, University of Liverpool,

Uk', " An Introduction to Multiagent

Systems".

[3.] Michael Fisher, Department of Computing,

Manchester Metropolitan University,

Manchester M1 5GD, United Kingdom,

M.Fisher@mmu.ac.uk “A suvey of

Concurrent MetateM-the language and its

application”.

[4.] Antonio Moreno , "Medical Applications of

Multi-Agent Systems" Computer Science &

Mathematics Department, Universitat

Rovira i Virgili ETSE. Campus Sescelades.

Av. dels Països Catalans, 26, 43007-

Tarragona, Spaina moreno@etse.urv.es

[5.] Yoav Shoham, Stanford University, Kevin

Leyton-Brown, University of British

Columbia "MULTIAGENT SYSTEMS

Algorithmic, Game-Theoretic, and Logical

Foundations".

[6.] Anja Zöller, Lars Braubach, Alexander

Pokahr, Franz Rothlauf, Torsten O.

Paulussen, Winfried Lamersdorf , Armin

Heinzl, Department of Business

Administration and Information Systems,

University of Mannheim, D-68131

Mannheim, Germany Email: {zoeller;

rothlauf; paulussen; heinzl}@uni-

mannheim.de Department of Computer

Science, Distributed and Information

Systems, University of Hamburg, D-22527

Hamburg, Germany Email: {braubach;

pokahr; lamersdorf}@informatik.uni-

hamburg.de, "Evaluation of a Multi-Agent

System for Hospital Patient Scheduling".

[7.] Michael Wooldridge, Mitsubishi Electric

Digital Library Group, 18th Floor, Centre

Point, 103 New Oxford Street, London WC1

1EB, United Kingdom, mjw@dlib.com, "A

Knowledge-Theoretic Semantics for

Concurrent Metatem".

Hossainara Begum Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 8, (Part - 5) August 2015, pp.133-140

 www.ijera.com 140 | P a g e

[8.] H. Barringer, M. Fisher, D. Gabbay, G.

Gough and R. Owens, Department of

Computer Science, University of

Manchester, Manchester, Department of

Computing, Manchester Metropolitan

University, Manchester, Department of

Computing, Imperial College of Science,

Technology and Medicine, London,

Nomura Research Institute Europe Ltd.,

London, "Metatem: An Introduction".

[9.] Marco Alberti, Faculdade de Ciências e

Tecnologia, Universidade Nova de Lisboa,

"Agent-Oriented Programming".

[10.] Antonio Moreno, Computer Science &

Mathematics Department, Universitat

Rovira i Virgili, ETSE. Campus Sescelades.

Av. dels Països Catalans, 26, 43007-

Tarragona, Spain, amoreno@etse.urv.es,

"Medical Applications of Multi Agent

Systems.

